Scene Background Initialization (SBI) dataset
The SBI dataset has been assembled in order to move the first steps towards evaluating and comparing the results
of background initialization algorithms and adopted for the SBMI2015 Workshop and the
Special Issue of Pattern Recognition Letters Journal on Scene Background Modeling and Initialization (2016).
A description and some results can be found in our work [1].
The dataset includes:
A) a dataset of 14 image sequences and the corresponding 14 ground truth backgrounds
(updated on January 25, 2016);
B) Matlab scripts (updated on July 26, 2016) for evaluating background initialization results.
Results of methods reported in [2] are also available (updated on November 30, 2016).
A) Dataset of 14 image sequences and corresponding ground truth backgrounds
The 14 image sequences have been extracted by original publicly available sequences that are frequently used in the literature to evaluate background initialization algorithms:
Name |
Dataset |
Original frames |
Used frames |
Original resolution |
Final resolution |
Brief description and issues |
Board | PBI | 0-227 | 0-227 | 200x164 | 200x164 | Man moving in front of a dashboard, with mild shadows |
Candela_m1.10 | Candela | 0-855 | 85-435 | 352x288 | 352x288 | Man entering and leaving a room, abandoning a bag for most of the frames |
CAVIAR1 | CAVIAR | 0-725 | 115-724 | 384x288 | 384x256 | People slowly walking along a corridor, with mild shadows |
CAVIAR2 | CAVIAR | 0-1500 | 900-1360 | 384x288 | 384x256 | People entering and leaving a store, standing only for few frames |
CaVignal | PBI | 0-257 | 0-257 | 200x136 | 200x136 | Man standing for most of the frames and then moving |
Foliage | PBI | 0-399 | 6-399 | 200x148 | 200x144 | Parked cars occluded by big waving leaves |
Hall&Monitor | COST 211 | 0-299 | 4-299 | 352x240 | 352x240 | Walking person and abandoned bag in the same image region for most of the frames |
HighwayI | ATON | 0-439 | 0-439 | 320x240 | 320x240 | Fast motion of cars along a highway, with strong shadows and small camera jitter |
HighwayII | ATON | 0-499 | 0-499 | 320x240 | 320x240 | Fast motion of cars along a highway, with strong shadows and small camera jitter |
HumanBody2 | RPI ISL | 0-898 | 70-810 | 320x240 | 320x240 | People quickly walking indoor, with mild shadows |
IBMtest2 | IBM | 0-1750 | 1027-1117 | 320x240 | 320x240 | People quickly walking along indoor corridors |
People&Foliage | PBI | 0-349 | 0-340 | 320x240 | 320x240 | Parked cars occluded by moving people and big waving leaves |
Snellen | PBI | 0-333 | 0-320 | 146x150 | 144x144 | Stationary Snellen chart occluded and shadowed by big waving leaves |
Toscana | MPI Informatik | 0-5 | 0-5 | 2272x1704 | 800x600 | Very few outdoor pictures of pedestrians taken at different times |
The subsets of used frames have been selected in order to avoid the inclusion into the testing sequences of empty frames
(frames not including foreground objects), while the final resolution has been chosen in order to avoid problems in the computation of
boundary patches for block-based methods.
The ground truths have been manually obtained by choosing one of the sequence frames free of foreground objects (not included into the subsets of used frames),
by stitching together empty background regions from different sequence frames, or by temporal median of background regions.
Click here to download all the 14 ground truths (zipped).
B) Matlab scripts for evaluating background initialization results
Matlab scripts (updated on July 26, 2016)
are provided for evaluating results in terms of six metrics
that include those used in the literature for background estimation.
Denoting with GT an image containing the true background and with CB the estimated background image computed with a background initialization method,
these six metrics are defined as follows:
- Average Gray-level Error (AGE): It is the average of the gray-level absolute difference between GT and CB
images. Its values range in [0, L-1], where L is the maximum number of grey levels; the lower the AGE
value, the better is the background estimate.
- Percentage of Error Pixels (pEPs): An error pixel (EP) is a pixel of CB whose value differs from the value
of the corresponding pixel in GT by more than some threshold th (in the experiments the value th=20 has been suggested).
pEPs is the ratio between the EPs and the number N of image pixels.
Its values range in [0, 1]; the lower the pEPs value, the better is the background estimate.
- Percentage of Clustered Error Pixels (pCEPs): A clustered error pixel (CEP) is defined as any error pixel whose
4-connected neighbors are also error pixels. pCEPs is the ratio between the CEPs and the number N of image
pixels. Its values range in [0,1]; the lower the pCEPs value, the better is the background estimate.
- Peak-Signal-to-Noise-Ratio (PSNR): It is defined as
PSNR = 10 log10((L-1)2/MSE),
where L is the maximum number of grey levels and MSE is the Mean Squared Error between GT and CB
images. It assumes values in decibels; the higher the PSNR value, the better is the background estimate.
- Multi-Scale Structural Similarity Index (MS-SSIM): This is the metric defined by Z. Wang, E. P. Simoncelli and A. C. Bovik
(link),
that uses structural distortion as an estimate of the perceived visual distortion.
It assumes values in [-1; 1]; the higher the value of MS-SSIM, the better is the
estimated background.
- Color image Quality Measure (CQM): This is the metric recently proposed by Y. Yalman and I. Erturk
(link),
based on a reversible transformation
of the YUV color space and on the PSNR computed in the single YUV bands. As for the PSNR, it assumes
values in decibels; the higher the CQM value, the better is the background estimate.
If you have problems downloading, please contact lucia.maddalena@cnr.it; if you use the SBI dataset, please cite our works [1], [2].
Results of methods reported in
[2]
Here, we report all the results of the background initialization methods compared in [2] for each sequence of the SBI dataset, so
that each new method can be easily compared with those considered in [2].
Table 1 reports average accuracy results obtained by the compared methods according to the adopted metrics,
while Tables 2 through 15 report accuracy results of all the compared methods on each SBI sequence, as well as their average per sequence.
In all the Tables, the best and the second best results for each metric and each sequence appear in red and blue, respectively.
Table 1: Average accuracy results of the compared methods on all sequences of the SBI dataset.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 14.1944 | 22.5150 | 18.4428 | 0.8737 | 25.6980 | 43.5839
| Color Median | 10.3744 | 13.4008 | 10.5571 | 0.8533 | 28.0044 | 42.4746
| MOG2 | 14.3579 | 4.0847 | 2.8080 | 0.8935 | 25.9576 | 38.1916
| KNN | 20.6968 | 7.5118 | 4.5180 | 0.7595 | 18.4701 | 26.3836
| BE-AAPSA | 11.4846 | 12.5518 | 10.0605 | 0.9247 | 27.8024 | 41.8124
| WS2006 | 5.2885 | 3.5335 | 1.2118 | 0.9349 | 28.8791 | 39.6334
| IMBS-MT | 4.2092 | 3.8819 | 2.2602 | 0.9598 | 33.4090 | 44.9362
| LaBGen | 2.9945 | 1.3972 | 0.9246 | 0.9764 | 35.2028 | 47.2947 |
RSL2011 | 5.8228 | 5.3511 | 4.0186 | 0.9172 | 29.9272 | 40.5713
| Photomontage | 5.8238 | 4.6952 | 3.7274 | 0.9334 | 31.8573 | 43.9038
| LRGeomCG | 8.7644 | 14.1305 | 11.0810 | 0.9302 | 28.9596 | 45.5625
| TMac | 8.8685 | 14.3577 | 11.2884 | 0.9284 | 28.7507 | 45.4125
| SC-SOBS_1 | 3.5023 | 4.1508 | 2.2295 | 0.9765 | 35.2723 | 50.1138 |
SC-SOBS_2 | 4.6049 | 4.7435 | 2.5370 | 0.9645 | 32.2024 | 45.7614
| BEWIS | 3.8665 | 2.4286 | 1.4238 | 0.9675 | 32.0143 | 44.3728
|
Table 2: Accuracy results
of all the compared methods on sequence Board and their Average.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 24.9527 | 45.4055 | 37.7530 | 0.6100 | 17.9834 | 44.0696
| Color Median | 17.9861 | 23.4360 | 20.1433 | 0.4549 | 17.7707 | 43.5605
| MOG2 | 21.5981 | 23.3689 | 15.2652 | 0.8433 | 17.0541 | 29.2805
| KNN | 31.1259 | 26.8963 | 17.2561 | 0.7734 | 13.4368 | 21.3434
| BE-AAPSA | 21.6749 | 0.2904 | 0.2459 | 0.7705 | 16.9839 | 32.3073
| WS2006 | 8.1210 | 6.0945 | 0.6799 | 0.8007 | 23.5534 | 34.6697
| IMBS-MT | 2.2537 | 0.3201 | 0.0061 | 0.9836 | 36.8244 | 52.4920 |
LaBGen | 5.7214 | 2.7287 | 0.7561 | 0.9054 | 29.6545 | 50.7244
| RSL2011 | 7.3911 | 5.3079 | 2.6616 | 0.9310 | 25.3463 | 29.0085
| Photomontage | 6.0480 | 2.4116 | 0.6829 | 0.9529 | 29.4804 | 50.4760
| LRGeomCG | 18.8829 | 35.9543 | 27.5213 | 0.6754 | 20.1325 | 43.7282
| TMac | 19.0408 | 36.2409 | 27.8293 | 0.6726 | 20.0735 | 43.7571
| SC-SOBS_1 | 4.7184 | 4.5671 | 0.1616 | 0.9273 | 29.9489 | 54.7757 |
SC-SOBS_2 | 6.5834 | 5.0000 | 0.1829 | 0.8898 | 28.6532 | 51.2832
| BEWIS | 5.5714 | 2.2165 | 0.5274 | 0.9514 | 29.9511 | 50.4528
| Average | 13.4447 | 14.6826 | 10.1115 | 0.8095 | 23.7898 | 42.1286
|
Table 3: Accuracy results
of all the compared methods on sequence Candela\_m1.10 and their Average.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 3.1270 | 3.0086 | 1.9423 | 0.9503 | 29.4636 | 45.0242
| Color Median | 3.3225 | 3.3519 | 2.1928 | 0.9382 | 27.5054 | 39.9418
| MOG2 | 1.7044 | 0.7694 | 0.6185 | 0.9914 | 34.0895 | 46.9634
| KNN | 11.2176 | 10.0507 | 5.8179 | 0.8158 | 17.3467 | 23.1109
| BE-AAPSA | 2.2656 | 0.0116 | 0.0065 | 0.9733 | 31.9643 | 47.2827 |
WS2006 | 2.5528 | 1.9048 | 0.9657 | 0.9636 | 29.6869 | 40.4489
| IMBS-MT | 1.3823 | 0.4705 | 0.0957 | 0.9893 | 35.4288 | 44.2374
| LaBGen | 2.5700 | 1.6809 | 1.2676 | 0.9709 | 30.3140 | 39.7975
| RSL2011 | 1.5767 | 0.3748 | 0.2358 | 0.9916 | 36.3572 | 43.9371
| Photomontage | 3.6780 | 3.5837 | 2.3763 | 0.9332 | 26.8665 | 38.8983
| LRGeomCG | 1.9037 | 0.6579 | 0.4991 | 0.9912 | 33.8805 | 45.0354
| TMac | 2.0456 | 1.0150 | 0.7842 | 0.9888 | 32.5507 | 43.7920
| SC-SOBS_1 | 1.8472 | 0.8986 | 0.5080 | 0.9775 | 32.6782 | 49.9181 |
SC-SOBS_2 | 3.0125 | 2.2204 | 1.2015 | 0.9532 | 28.9964 | 40.4835
| BEWIS | 1.9049 | 0.7931 | 0.4350 | 0.9852 | 34.0806 | 41.6700
| Average | 2.9407 | 2.0528 | 1.2631 | 0.9609 | 30.7473 | 42.0361
|
Table 4: Accuracy results
of all the compared methods on sequence CAVIAR1 and their Average.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 5.2178 | 5.1097 | 4.0141 | 0.9382 | 29.3866 | 51.3920
| Color Median | 2.6858 | 0.3438 | 0.2421 | 0.9918 | 34.8191 | 51.6298
| MOG2 | 3.1274 | 2.8412 | 2.3621 | 0.9722 | 29.3055 | 41.4591
| KNN | 4.6259 | 4.0415 | 2.8463 | 0.9348 | 24.3250 | 29.9878
| BE-AAPSA | 3.6881 | 0.0091 | 0.0037 | 0.9667 | 32.4477 | 51.0556
| WS2006 | 2.6638 | 0.1261 | 0.0071 | 0.9932 | 35.8184 | 49.3176
| IMBS-MT | 1.2267 | 0.0539 | 0.0214 | 0.9967 | 42.2244 | 55.0816 |
LaBGen | 3.8243 | 0.6327 | 0.4679 | 0.9819 | 31.5534 | 49.2123
| RSL2011 | 2.3295 | 0.1597 | 0.0397 | 0.9947 | 37.9348 | 52.3607 |
Photomontage | 2.6498 | 0.1333 | 0.0651 | 0.9933 | 37.1385 | 50.0340
| LRGeomCG | 5.6735 | 6.6274 | 5.4830 | 0.9120 | 28.1790 | 51.1680
| TMac | 5.6945 | 6.7017 | 5.5593 | 0.9116 | 28.1425 | 51.1681
| SC-SOBS_1 | 3.0788 | 0.8199 | 0.4944 | 0.9781 | 32.0824 | 51.6212
| SC-SOBS_2 | 4.1143 | 1.0376 | 0.6571 | 0.9724 | 30.2392 | 48.7241
| BEWIS | 3.5539 | 0.4588 | 0.3103 | 0.9813 | 32.2702 | 50.0786
| Average | 3.6103 | 1.9398 | 1.5049 | 0.9679 | 32.3911 | 48.9527
|
Table 5: Accuracy results
of all the compared methods on sequence CAVIAR2 and their Average.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 1.1967 | 0.1689 | 0.0356 | 0.9979 | 40.7302 | 59.6979 |
Color Median | 0.6987 | 0.0000 | 0.0000 | 0.9994 | 47.5113 | 59.5439 |
MOG2 | 1.4154 | 0.1658 | 0.0997 | 0.9974 | 40.1120 | 53.4368
| KNN | 7.1935 | 4.8910 | 1.4404 | 0.8469 | 18.9970 | 25.5783
| BE-AAPSA | 1.1718 | 0.0000 | 0.0000 | 0.9983 | 43.7194 | 54.6637
| WS2006 | 0.7138 | 0.0387 | 0.0000 | 0.9991 | 44.1003 | 59.6514
| IMBS-MT | 1.2948 | 0.0102 | 0.0000 | 0.9986 | 43.0235 | 53.7161
| LaBGen | 0.8131 | 0.0000 | 0.0000 | 0.9993 | 46.8425 | 58.3582
| RSL2011 | 0.8678 | 0.1312 | 0.0763 | 0.9962 | 39.7804 | 57.3866
| Photomontage | 1.1047 | 0.0000 | 0.0000 | 0.9984 | 44.4508 | 54.3645
| LRGeomCG | 1.1822 | 0.3265 | 0.1038 | 0.9971 | 39.8982 | 59.1772
| TMac | 1.1877 | 0.3286 | 0.1058 | 0.9970 | 39.8569 | 59.1736
| SC-SOBS_1 | 0.7550 | 0.0000 | 0.0000 | 0.9994 | 47.2190 | 59.1624
| SC-SOBS_2 | 0.9428 | 0.0000 | 0.0000 | 0.9992 | 45.6705 | 57.4730
| BEWIS | 0.7389 | 0.0000 | 0.0000 | 0.9994 | 47.6100 | 58.7359
| Average | 1.4185 | 0.4041 | 0.1241 | 0.9882 | 41.9681 | 55.3413
|
Table 6: Accuracy results
of all the compared methods on sequence CaVignal and their Average.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 8.7869 | 10.4890 | 8.2537 | 0.8338 | 21.6405 | 50.2703
| Color Median | 10.3082 | 10.4632 | 8.1066 | 0.7984 | 18.1355 | 33.1438
| MOG2 | 16.9327 | 0.1114 | 0.0837 | 0.8136 | 18.5891 | 34.5104
| KNN | 15.9267 | 0.0813 | 0.0127 | 0.8241 | 18.2332 | 30.9930
| BE-AAPSA | 10.0755 | 4.8100 | 3.1200 | 0.9711 | 26.1972 | 39.4600
| WS2006 | 2.5403 | 1.5000 | 0.4743 | 0.9289 | 27.1089 | 37.0609
| IMBS-MT | 0.7692 | 0.0147 | 0.0000 | 0.9982 | 45.9202 | 57.1044 |
LaBGen | 0.4542 | 0.0147 | 0.0000 | 0.9981 | 45.5789 | 55.9161
| RSL2011 | 0.9106 | 0.0147 | 0.0000 | 0.9973 | 43.9322 | 53.7718
| Photomontage | 11.2665 | 11.2206 | 8.8529 | 0.7919 | 17.6257 | 32.0570
| LRGeomCG | 5.4839 | 6.4118 | 3.9890 | 0.9111 | 28.3288 | 52.9853
| TMac | 5.4979 | 6.5074 | 4.0625 | 0.9109 | 28.2877 | 53.0188
| SC-SOBS_1 | 0.9590 | 0.6728 | 0.0000 | 0.9947 | 37.4679 | 55.9939
| SC-SOBS_2 | 1.1434 | 0.6949 | 0.0000 | 0.9935 | 37.0992 | 54.1992
| BEWIS | 0.3990 | 0.0147 | 0.0000 | 0.9984 | 46.5616 | 59.8510 |
Average | 6.0969 | 3.5347 | 2.4637 | 0.9176 | 30.7138 | 46.6891
|
Table 7: Accuracy results
of all the compared methods on sequence Foliage and their Average.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 30.0992 | 65.8542 | 46.9549 | 0.6785 | 17.3201 | 26.8996
| Color Median | 27.0135 | 47.3125 | 30.4583 | 0.6444 | 16.7842 | 28.7321
| MOG2 | 32.3624 | 0.6685 | 0.5526 | 0.8038 | 16.5991 | 31.5282
| KNN | 34.5615 | 0.3962 | 0.0385 | 0.6281 | 14.1761 | 25.6845
| BE-AAPSA | 26.2190 | 59.9800 | 43.0900 | 0.8015 | 18.4317 | 30.2999
| WS2006 | 6.8649 | 2.8507 | 0.0069 | 0.9754 | 27.2438 | 34.9776
| IMBS-MT | 7.5809 | 9.8507 | 3.1319 | 0.9090 | 22.7278 | 34.0028
| LaBGen | 1.6172 | 0.0000 | 0.0000 | 0.9982 | 40.6051 | 46.7662 |
RSL2011 | 9.0230 | 12.3090 | 8.1250 | 0.8370 | 20.9844 | 30.4461
| Photomontage | 1.8592 | 0.0000 | 0.0000 | 0.9974 | 39.1779 | 45.6052
| LRGeomCG | 11.6932 | 20.8924 | 14.9861 | 0.9535 | 23.9826 | 39.0643
| TMac | 12.0335 | 21.9826 | 15.9861 | 0.9498 | 23.7072 | 38.7549
| SC-SOBS_1 | 3.0825 | 0.0625 | 0.0000 | 0.9939 | 35.6936 | 39.6256
| SC-SOBS_2 | 3.3587 | 0.0660 | 0.0000 | 0.9931 | 35.1103 | 39.5048
| BEWIS | 1.7767 | 0.0174 | 0.0000 | 0.9978 | 39.5441 | 46.1713 |
Average | 13.9430 | 16.1495 | 10.8887 | 0.8774 | 26.1392 | 35.8709
|
Table 8: Accuracy results
of all the compared methods on sequence Hall&Monitor and their Average.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 3.7238 | 3.0516 | 1.6643 | 0.9545 | 29.7571 | 42.6596
| Color Median | 2.7105 | 0.9931 | 0.5339 | 0.9640 | 30.4656 | 42.6705
| MOG2 | 2.4506 | 0.0109 | 0.0045 | 0.9833 | 34.3943 | 45.9714
| KNN | 3.9413 | 0.0121 | 0.0021 | 0.9519 | 28.2208 | 37.4907
| BE-AAPSA | 2.4425 | 0.3200 | 0.0400 | 0.9892 | 36.4218 | 45.2466
| WS2006 | 2.6644 | 0.5563 | 0.0308 | 0.9821 | 30.9313 | 40.0949
| IMBS-MT | 1.5350 | 0.0923 | 0.0000 | 0.9954 | 38.6214 | 48.5224 |
LaBGen | 2.4008 | 0.1302 | 0.0000 | 0.9916 | 37.1746 | 45.1416
| RSL2011 | 3.2937 | 1.6489 | 0.7931 | 0.9377 | 26.9214 | 36.7046
| Photomontage | 2.7986 | 0.3610 | 0.0817 | 0.9819 | 33.3715 | 41.7323
| LRGeomCG | 2.0476 | 0.2237 | 0.0000 | 0.9938 | 38.0243 | 46.3813 |
TMac | 2.0599 | 0.2415 | 0.0000 | 0.9937 | 37.5664 | 46.2214
| SC-SOBS_1 | 1.8125 | 0.6641 | 0.2166 | 0.9832 | 34.2985 | 44.2863
| SC-SOBS_2 | 2.6930 | 0.7599 | 0.2166 | 0.9798 | 33.1795 | 42.5386
| BEWIS | 3.6217 | 1.4347 | 0.0154 | 0.9626 | 27.1794 | 35.6121
| Average | 2.6797 | 0.7000 | 0.2399 | 0.9763 | 33.1019 | 42.7516
|
Table 9: Accuracy results
of all the compared methods on sequence HighwayI and their Average.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 6.4127 | 0.2995 | 0.0156 | 0.9700 | 30.3580 | 60.3090
| Color Median | 1.4275 | 0.1563 | 0.0143 | 0.9924 | 40.1432 | 62.5723 |
MOG2 | 2.6031 | 0.0023 | 0.0002 | 0.9753 | 35.8635 | 58.2889
| KNN | 6.1277 | 0.0616 | 0.0003 | 0.8506 | 25.1521 | 34.8174
| BE-AAPSA | 4.3721 | 2.7600 | 0.6900 | 0.9442 | 31.1332 | 52.3623
| WS2006 | 2.5185 | 0.6849 | 0.0247 | 0.9816 | 35.6885 | 56.9113
| IMBS-MT | 1.4913 | 0.0612 | 0.0026 | 0.9939 | 41.7728 | 58.8328
| LaBGen | 1.9054 | 0.4362 | 0.0286 | 0.9877 | 37.4928 | 53.1613
| RSL2011 | 1.5918 | 0.2344 | 0.0195 | 0.9899 | 38.8728 | 59.4531
| Photomontage | 2.1745 | 0.4076 | 0.0482 | 0.9830 | 37.1250 | 59.0270
| LRGeomCG | 2.6535 | 0.2018 | 0.0130 | 0.9779 | 36.2808 | 58.2359
| TMac | 2.6788 | 0.1992 | 0.0130 | 0.9777 | 36.1917 | 58.2417
| SC-SOBS_1 | 0.9917 | 0.0026 | 0.0000 | 0.9968 | 44.3343 | 66.0819 |
SC-SOBS_2 | 2.1209 | 0.3216 | 0.0221 | 0.9870 | 37.3789 | 53.6069
| BEWIS | 2.1070 | 0.4661 | 0.0169 | 0.9886 | 36.8023 | 54.4956
| Average | 2.7451 | 0.4197 | 0.0606 | 0.9731 | 36.3060 | 56.4265
|
Table 10: Accuracy results
of all the compared methods on sequence HighwayII and their Average.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 3.3414 | 0.3607 | 0.0000 | 0.9915 | 34.3045 | 47.1299
| Color Median | 1.7278 | 0.3190 | 0.0013 | 0.9961 | 34.6639 | 42.3162
| MOG2 | 2.0893 | 0.0040 | 0.0000 | 0.9946 | 36.1190 | 45.2643
| KNN | 3.2112 | 0.0085 | 0.0001 | 0.9851 | 32.0981 | 39.6454
| BE-AAPSA | 2.5181 | 0.2800 | 0.0100 | 0.9903 | 36.2738 | 47.3613
| WS2006 | 2.4906 | 0.4883 | 0.0130 | 0.9927 | 33.9515 | 40.5088
| IMBS-MT | 1.8684 | 0.0260 | 0.0000 | 0.9960 | 40.1098 | 48.8094 |
LaBGen | 2.4240 | 0.3034 | 0.0026 | 0.9921 | 35.5876 | 42.8025
| RSL2011 | 2.3000 | 0.5130 | 0.0846 | 0.9907 | 33.8305 | 42.4937
| Photomontage | 2.4306 | 0.5885 | 0.0052 | 0.9909 | 34.3975 | 41.7656
| LRGeomCG | 2.7526 | 0.3555 | 0.0026 | 0.9908 | 35.3406 | 46.3161
| TMac | 2.7697 | 0.3763 | 0.0039 | 0.9908 | 35.2287 | 46.2181
| SC-SOBS_1 | 0.7100 | 0.0000 | 0.0000 | 0.9991 | 46.8739 | 56.6012 |
SC-SOBS_2 | 2.3946 | 0.2982 | 0.0039 | 0.9926 | 35.7688 | 43.2384
| BEWIS | 2.1932 | 0.4141 | 0.0013 | 0.9942 | 34.6264 | 41.4061
| Average | 2.3481 | 0.2890 | 0.0086 | 0.9925 | 35.9450 | 44.7918
|
Table 11: Accuracy results
of all the compared methods on sequence HumanBody2 and their Average.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 6.3783 | 5.5065 | 3.0443 | 0.9736 | 27.9022 | 38.4071
| Color Median | 2.9408 | 0.2995 | 0.0391 | 0.9970 | 35.4279 | 46.6252
| MOG2 | 11.2767 | 13.4609 | 9.9427 | 0.8752 | 19.5258 | 32.1251
| KNN | 20.9423 | 18.5130 | 15.2188 | 0.7783 | 14.5871 | 21.4805
| BE-AAPSA | 6.3274 | 0.0797 | 0.0550 | 0.9528 | 24.9434 | 36.6271
| WS2006 | 3.9876 | 0.6393 | 0.0026 | 0.9923 | 30.7994 | 42.8966
| IMBS-MT | 1.9190 | 0.5794 | 0.0534 | 0.9958 | 34.0997 | 45.2074
| LaBGen | 3.8273 | 0.2630 | 0.0013 | 0.9975 | 34.4291 | 46.8653 |
RSL2011 | 3.1154 | 0.3099 | 0.0013 | 0.9959 | 35.5261 | 46.2671
| Photomontage | 11.4203 | 13.0052 | 9.4375 | 0.8751 | 19.2008 | 30.9881
| LRGeomCG | 5.7621 | 4.6497 | 2.4414 | 0.9788 | 28.7047 | 40.1984
| TMac | 5.8044 | 4.7292 | 2.4583 | 0.9786 | 28.6019 | 40.2122
| SC-SOBS_1 | 1.8126 | 0.0990 | 0.0000 | 0.9980 | 39.3952 | 47.3105 |
SC-SOBS_2 | 3.3927 | 0.3411 | 0.0000 | 0.9969 | 35.0465 | 45.4292
| BEWIS | 4.2667 | 1.5013 | 0.0260 | 0.9866 | 27.9740 | 41.7024
| Average | 6.2116 | 4.2651 | 2.8481 | 0.9582 | 29.0776 | 40.1561
|
Table 12: Accuracy results
of all the compared methods on sequence IBMtest2 and their Average.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 5.1227 | 3.7643 | 1.8112 | 0.9800 | 30.2187 | 41.6366
| Color Median | 2.2862 | 0.0391 | 0.0000 | 0.9939 | 36.6967 | 48.5607 |
MOG2 | 3.1981 | 1.5039 | 0.7083 | 0.9717 | 30.518 | 38.1524
| KNN | 21.3572 | 16.2995 | 2.3099 | 0.6671 | 14.1235 | 20.5705
| BE-AAPSA | 5.7290 | 0.0012 | 0.0000 | 0.9914 | 31.7541 | 44.5344
| WS2006 | 4.6744 | 1.9531 | 0.0495 | 0.9410 | 24.2631 | 32.8595
| IMBS-MT | 7.3508 | 3.2734 | 0.1328 | 0.9721 | 24.6275 | 36.4310
| LaBGen | 3.7491 | 0.0872 | 0.0000 | 0.9906 | 33.5923 | 45.9029
| RSL2011 | 6.1074 | 2.7005 | 0.9922 | 0.9303 | 24.4272 | 36.0603
| Photomontage | 3.1954 | 0.0690 | 0.0000 | 0.9898 | 35.1813 | 45.3905
| LRGeomCG | 3.6413 | 1.4544 | 0.6081 | 0.9868 | 32.8930 | 44.9516
| TMac | 3.6575 | 1.4831 | 0.6289 | 0.9868 | 32.8424 | 44.9660
| SC-SOBS_1 | 2.3424 | 0.0143 | 0.0000 | 0.9954 | 37.9515 | 50.5923 |
SC-SOBS_2 | 3.9729 | 0.0964 | 0.0000 | 0.9919 | 33.7736 | 46.3316
| BEWIS | 3.9848 | 1.5013 | 0.0651 | 0.9602 | 25.6501 | 39.8792
| Average | 5.3579 | 2.2827 | 0.4871 | 0.9566 | 29.9009 | 41.1213
|
Table 13: Accuracy results
of all the compared methods on sequence People&Foliage and their Average.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 34.4507 | 61.6576 | 54.0924 | 0.7555 | 15.3719 | 31.9727
| Color Median | 24.4211 | 32.2396 | 25.3203 | 0.6114 | 15.1870 | 27.4979
| MOG2 | 33.8442 | 0.7108 | 0.6134 | 0.8584 | 16.2252 | 27.4728
| KNN | 48.4920 | 0.4718 | 0.2966 | 0.4238 | 10.9196 | 19.8121
| BE-AAPSA | 20.1865 | 31.0000 | 24.1900 | 0.9256 | 19.7152 | 29.3564
| WS2006 | 5.4243 | 3.5716 | 0.0924 | 0.9269 | 22.6952 | 31.3847
| IMBS-MT | 8.3982 | 7.3568 | 3.2305 | 0.8514 | 20.0658 | 32.5231
| LaBGen | 1.7751 | 0.0026 | 0.0000 | 0.9968 | 39.7161 | 46.2148 |
RSL2011 | 8.1966 | 9.4023 | 7.8867 | 0.8628 | 21.2093 | 27.1459
| Photomontage | 1.4103 | 0.0039 | 0.0000 | 0.9973 | 41.0866 | 47.1517 |
LRGeomCG | 29.2393 | 57.7812 | 48.2135 | 0.8332 | 16.8399 | 32.1823
| TMac | 29.4402 | 57.1888 | 47.6719 | 0.8233 | 16.6676 | 32.1267
| SC-SOBS_1 | 7.5889 | 11.5482 | 6.2734 | 0.9333 | 23.6413 | 36.3079
| SC-SOBS_2 | 7.9408 | 11.5586 | 6.2734 | 0.9329 | 23.6085 | 36.1581
| BEWIS | 11.9685 | 13.0182 | 10.2018 | 0.8823 | 17.6743 | 26.7312
| Average | 18.1851 | 19.8341 | 15.6238 | 0.8410 | 21.3749 | 32.2692
|
Table 14: Accuracy results
of all the compared methods on sequence Snellen and their Average.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 54.2865 | 87.7025 | 81.0282 | 0.7154 | 12.6049 | 34.4532
| Color Median | 42.3981 | 62.2010 | 56.9734 | 0.6932 | 13.6573 | 36.0691
| MOG2 | 58.8159 | 0.7615 | 0.6839 | 0.5336 | 11.4143 | 27.0312
| KNN | 61.9389 | 0.6832 | 0.4328 | 0.4493 | 10.6164 | 22.5804
| BE-AAPSA | 46.7580 | 76.0800 | 69.3300 | 0.7615 | 13.6310 | 37.1410
| WS2006 | 23.0010 | 23.1674 | 12.2685 | 0.7481 | 15.6158 | 24.9930
| IMBS-MT | 14.4480 | 25.3279 | 19.7290 | 0.8668 | 19.7436 | 40.1151
| LaBGen | 4.6412 | 6.3368 | 5.9317 | 0.9792 | 27.1445 | 47.9560 |
RSL2011 | 16.0515 | 14.4290 | 12.6640 | 0.7190 | 16.7070 | 28.4869
| Photomontage | 29.9797 | 33.4973 | 30.4688 | 0.5926 | 14.1466 | 26.9210
| LRGeomCG | 24.4846 | 50.4340 | 42.8337 | 0.9250 | 18.6585 | 42.1307
| TMac | 24.8743 | 51.9965 | 44.3528 | 0.9206 | 18.5311 | 41.8552
| SC-SOBS_1 | 16.1433 | 35.4504 | 21.8412 | 0.9332 | 21.6050 | 46.0165 |
SC-SOBS_2 | 16.5042 | 35.4745 | 21.9088 | 0.9322 | 21.3953 | 44.9320
| BEWIS | 4.6386 | 5.2758 | 3.3131 | 0.9692 | 25.7540 | 42.7116
| Average | 29.2643 | 33.9212 | 28.2507 | 0.7826 | 17.4150 | 36.2262
|
Table 15: Accuracy results
of all the compared methods on sequence Toscana and their Average.
Method | AGE | pEPs | pCEPs | MS-SSIM | PSNR | CQM |
Mean | 11.6247 | 22.8308 | 17.5896 | 0.8831 | 22.7298 | 36.2525
| Color Median | 5.3148 | 6.4562 | 3.7742 | 0.8707 | 23.2941 | 31.7804
| MOG2 | 9.5929 | 12.806 | 8.3773 | 0.8947 | 23.5968 | 23.1972
| KNN | 19.0935 | 22.7581 | 17.5800 | 0.7034 | 16.3492 | 16.2754
| BE-AAPSA | 7.3553 | 0.1033 | 0.0658 | 0.9095 | 25.6164 | 37.6754
| WS2006 | 5.8222 | 5.8935 | 2.3500 | 0.8623 | 22.8504 | 29.0927
| IMBS-MT | 7.4109 | 6.9096 | 5.2394 | 0.8903 | 22.5367 | 22.0319
| LaBGen | 6.1993 | 6.9440 | 4.4881 | 0.8805 | 23.1537 | 33.3061
| RSL2011 | 18.7636 | 27.3794 | 22.6806 | 0.6662 | 17.1506 | 24.4755
| Photomontage | 1.5175 | 0.4517 | 0.1652 | 0.9892 | 36.7526 | 50.2416 |
LRGeomCG | 7.3009 | 11.8569 | 8.4394 | 0.8959 | 24.2914 | 36.3206
| TMac | 7.3742 | 12.0163 | 8.5815 | 0.8958 | 24.2609 | 36.2690
| SC-SOBS_1 | 3.1898 | 3.3113 | 1.7183 | 0.9616 | 30.6221 | 43.3002 |
SC-SOBS_2 | 6.2949 | 8.5400 | 5.0521 | 0.8880 | 24.9143 | 36.7567
| BEWIS | 7.4054 | 6.8877 | 5.0215 | 0.8878 | 22.5227 | 31.7212
| Average | 8.2840 | 10.3430 | 7.4082 | 0.8719 | 24.0428 | 32.5798
|
Please, observe that the above CMQ values were evaluated using a previous version of the Matlab scripts, that included a bug (you can still download the Old version of Matlab scripts to compare with the above results).
References
[1]
L. Maddalena, A. Petrosino,
Towards Benchmarking Scene Background Initialization,
in V. Murino et al. (eds), New Trends in Image Analysis and Processing -- ICIAP 2015 Workshops,
Lecture Notes in Computer Science, Vol. 9281, Springer International Publishing Switzerland, DOI 10.1007/978-3-319-23222-5_57#, pp. 469–476, 2015.
[2]
T. Bouwmans, L. Maddalena, A. Petrosino,
Scene background initialization: A taxonomy, Pattern Recognition Letters 96, DOI 10.1016/j.patrec.2016.12.024, 3-11, 2017.